Parameter selection in particle swarm optimisation: a survey
نویسندگان
چکیده
منابع مشابه
Multi-objective particle swarm optimisation methods
This study compares a number of selection regimes for the choosing of global best (gbest) and personal best (pbest) for swarm members in multi-objective particle swarm optimisation (MOPSO). Two distinct gbest selection techniques are shown to exist in the literature, those that do not restrict the selection of archive members and those with ‘distance’ based gbest selection techniques. Theoretic...
متن کاملParameter Optimization of PID Controller Based on Quantum-behaved Particle Swarm Optimization Algorithm
The conventional parameter optimisation of PID controller is easy to produce surge and big overshoot, and therefore heuristics such as genetic algorithm (GA), particle swarm optimisation (PSO) are employed to enhance the capability of traditional techniques. But the major problem of these algorithms is that they may be trapped in the local optima of the objective and lead to poor performance. I...
متن کاملA New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملClustering-Based Leaders' Selection in Multi-Objective Particle Swarm Optimisation
Clustering-based Leaders’ Selection (CLS) is a novel approach for leaders selection in multi-objective particle swarm optimisation. Both objective and solution spaces are clustered. An indirect mapping between clusters in both spaces is defined to recognize regions with potentially better solutions. A leaders archive is built which contains representative particles of selected clusters in the o...
متن کاملA New Binary Particle Swarm Optimisation Algorithm for Feature Selection
Feature selection aims to select a small number of features from a large feature set to achieve similar or better classification performance than using all features. This paper develops a new binary particle swarm optimisation (PSO) algorithm (named PBPSO) based on which a new feature selection approach (PBPSOfs) is developed to reduce the number of features and increase the classification accu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Exp. Theor. Artif. Intell.
دوره 25 شماره
صفحات -
تاریخ انتشار 2013